skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alamzadeh, Idban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acquiring information about the surrounding environment is crucial for reconfigurable intelligent surfaces (RISs) to effectively manipulate radio wave propagation. This operation can be fully automated by incorporating an integrated sensing mechanism, leading to a hybrid configuration known as a hybrid reconfigurable intelligent surface (HRIS). Several HRIS geometries have been studied in previous works, with full-wave simulations used to showcase their sensing capabilities. However, these simulated models often fail to address the practical design challenges associated with HRISs. This paper presents an experimental proof-of-concept for an HRIS, focusing on the design considerations that have been neglected in simulations but are vital for experimental validation. The HRIS prototype comprises two types of elements: a conventional element designed for reconfigurable reflection and a hybrid one for sensing and reconfigurable reflection. The metasurface can carry out the required sensing operations by utilizing signals coupled to several hybrid elements. This paper outlines the design considerations necessary to create a practical HRIS configuration that can be fabricated using standard PCB technology. The sensing capabilities of the HRIS are demonstrated experimentally through angle of arrival (AoA) detection. The proposed HRIS has the potential to facilitate smart, autonomous wireless communication networks, wireless power transfer, and sensing systems. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 7, 2026